ADVERTISEMENT

NEDA calls for PSA-led data governance framework to boost AI

Published Feb 10, 2025 07:02 am

To bolster public trust, the Philippine Statistics Authority (PSA) should spearhead the development of a clear and reliable nationwide data management system, ensuring accuracy and consistency.

In a policy note on artificial intelligence (AI) released Friday, Feb. 7, the National Economic and Development Authority (NEDA) suggested that the PSA lead the national government in addressing bottlenecks in data systems.

"Fragmented and inconsistent data practices in the Philippines limit the utility of AI solutions and undermine public trust," NEDA stated in the document, emphasizing that informed decision-making and effective governance are data-driven.

To address these challenges, NEDA recommended establishing a comprehensive national data governance framework under the PSA's leadership.

"The PSA is uniquely positioned to lead this initiative," NEDA asserted, noting that the Department of Budget and Management (DBM), National Privacy Commission (NPC), and Department of Information and Communications Technology (DICT) would support the statistical agency, serving as its partners in ensuring data quality, standardization, and accessibility.

The report highlighted the importance of the DBM's Open Government Partnership (OGP) efforts in improving transparency and increasing public participation, particularly in fiscal matters. These efforts would complement the PSA's technical expertise as it leads the development of a "comprehensive and cohesive data governance framework."

NEDA suggested that the framework should establish "unified standards for data generation, collection, storage, processing, and sharing across both public and private sectors."

It also recommended a portal providing secure access to curated, high-quality datasets for authorized researchers and regulators, ensuring both data accessibility and responsible management.

Robust coordination with key agencies and private sector partners will ensure accountability and effective policy alignment, while also accelerating data digitalization in critical sectors.

"These efforts will create datasets crucial for AI applications, improving service delivery and decision-making in these sectors," the report stated.

Among NEDA's immediate recommendations is the development of human capital, citing the shortage of skilled professionals and significant digital literacy gaps as primary obstacles to maximizing the workforce's benefit from AI.

NEDA also encouraged the expansion of digital infrastructure, emphasizing its critical role in unlocking AI's full potential in the Philippines.

It noted, however, that access to high-speed broadband, 5G networks, and energy-efficient data centers is limited, especially in underserved areas, hindering AI adoption and slowing economic growth.

Ultimately, NEDA recommended establishing a "unified national AI strategy to align efforts, reduce inefficiencies, and unlock AI's full potential across the economy."

Related Tags

Philippine Statistics Authority (PSA) National Economic Development Authority (NEDA) Department of Budget Management Procurement Service Artificial Intelligence (AI)
ADVERTISEMENT
.most-popular .layout-ratio{ padding-bottom: 79.13%; } @media (min-width: 768px) and (max-width: 1024px) { .widget-title { font-size: 15px !important; } }

{{ articles_filter_1561_widget.title }}

.most-popular .layout-ratio{ padding-bottom: 79.13%; } @media (min-width: 768px) and (max-width: 1024px) { .widget-title { font-size: 15px !important; } }

{{ articles_filter_1562_widget.title }}

.most-popular .layout-ratio{ padding-bottom: 79.13%; } @media (min-width: 768px) and (max-width: 1024px) { .widget-title { font-size: 15px !important; } }

{{ articles_filter_1563_widget.title }}

{{ articles_filter_1564_widget.title }}

.mb-article-details { position: relative; } .mb-article-details .article-body-preview, .mb-article-details .article-body-summary{ font-size: 17px; line-height: 30px; font-family: "Libre Caslon Text", serif; color: #000; } .mb-article-details .article-body-preview iframe , .mb-article-details .article-body-summary iframe{ width: 100%; margin: auto; } .read-more-background { background: linear-gradient(180deg, color(display-p3 1.000 1.000 1.000 / 0) 13.75%, color(display-p3 1.000 1.000 1.000 / 0.8) 30.79%, color(display-p3 1.000 1.000 1.000) 72.5%); position: absolute; height: 200px; width: 100%; bottom: 0; display: flex; justify-content: center; align-items: center; padding: 0; } .read-more-background a{ color: #000; } .read-more-btn { padding: 17px 45px; font-family: Inter; font-weight: 700; font-size: 18px; line-height: 16px; text-align: center; vertical-align: middle; border: 1px solid black; background-color: white; } .hidden { display: none; }
function initializeAllSwipers() { // Get all hidden inputs with cms_article_id document.querySelectorAll('[id^="cms_article_id_"]').forEach(function (input) { const cmsArticleId = input.value; const articleSelector = '#article-' + cmsArticleId + ' .body_images'; const swiperElement = document.querySelector(articleSelector); if (swiperElement && !swiperElement.classList.contains('swiper-initialized')) { new Swiper(articleSelector, { loop: true, pagination: false, navigation: { nextEl: '#article-' + cmsArticleId + ' .swiper-button-next', prevEl: '#article-' + cmsArticleId + ' .swiper-button-prev', }, }); } }); } setTimeout(initializeAllSwipers, 3000); const intersectionObserver = new IntersectionObserver( (entries) => { entries.forEach((entry) => { if (entry.isIntersecting) { const newUrl = entry.target.getAttribute("data-url"); if (newUrl) { history.pushState(null, null, newUrl); let article = entry.target; // Extract metadata const author = article.querySelector('.author-section').textContent.replace('By', '').trim(); const section = article.querySelector('.section-info ').textContent.replace(' ', ' '); const title = article.querySelector('.article-title h1').textContent; // Parse URL for Chartbeat path format const parsedUrl = new URL(newUrl, window.location.origin); const cleanUrl = parsedUrl.host + parsedUrl.pathname; // Update Chartbeat configuration if (typeof window._sf_async_config !== 'undefined') { window._sf_async_config.path = cleanUrl; window._sf_async_config.sections = section; window._sf_async_config.authors = author; } // Track virtual page view with Chartbeat if (typeof pSUPERFLY !== 'undefined' && typeof pSUPERFLY.virtualPage === 'function') { try { pSUPERFLY.virtualPage({ path: cleanUrl, title: title, sections: section, authors: author }); } catch (error) { console.error('ping error', error); } } // Optional: Update document title if (title && title !== document.title) { document.title = title; } } } }); }, { threshold: 0.1 } ); function showArticleBody(button) { const article = button.closest("article"); const summary = article.querySelector(".article-body-summary"); const body = article.querySelector(".article-body-preview"); const readMoreSection = article.querySelector(".read-more-background"); // Hide summary and read-more section summary.style.display = "none"; readMoreSection.style.display = "none"; // Show the full article body body.classList.remove("hidden"); } document.addEventListener("DOMContentLoaded", () => { let loadCount = 0; // Track how many times articles are loaded const offset = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; // Offset values const currentUrl = window.location.pathname.substring(1); let isLoading = false; // Prevent multiple calls if (!currentUrl) { console.log("Current URL is invalid."); return; } const sentinel = document.getElementById("load-more-sentinel"); if (!sentinel) { console.log("Sentinel element not found."); return; } function isSentinelVisible() { const rect = sentinel.getBoundingClientRect(); return ( rect.top < window.innerHeight && rect.bottom >= 0 ); } function onScroll() { if (isLoading) return; if (isSentinelVisible()) { if (loadCount >= offset.length) { console.log("Maximum load attempts reached."); window.removeEventListener("scroll", onScroll); return; } isLoading = true; const currentOffset = offset[loadCount]; window.loadMoreItems().then(() => { let article = document.querySelector('#widget_1690 > div:nth-last-of-type(2) article'); intersectionObserver.observe(article) loadCount++; }).catch(error => { console.error("Error loading more items:", error); }).finally(() => { isLoading = false; }); } } window.addEventListener("scroll", onScroll); });

Sign up by email to receive news.